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LETTER TO THE EDITOR 

Exact solution and surface critical behaviour of an O(n) 
model on the honeycomb lattice 
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t Mnthematics Depahnent. School of Mathematical Sciences. Australian National University, 
Canberra ACT 0200, AusMia 

Megura-ku, Tokyo, Japan 
Institute of Physics, College of Arts and Sciences. University of Ihkyo, Komnba 3-8-1, 

Received 21 May 1993 

Abstract. We obtain the exact Bethe an& solution of an O(n)  model on the honeycomb 
lattice with open boundaries across a finite strip. Sevenl quantities relevant to the surface 
critical behaviour of the O(n) model nre derived from this solution. The exact surface critical 
exponents are in agreement with those obtained by Cardy and by Duplantier and Saleur based 
on conformal invariance arguments. 

The representation of polymers in terms of the n = 0 limit of the n-vector or O(n) model 
(see, e.g. [I]), along with Coulomb gas methods, conformal invariance arguments and 
exact solutions, has lead to the discovery of many new exact results for the configurational 
statistics of two-dimensional polymers (for reviews, see e.g. [2-4]). These include infinite 
families of exact critical exponents describing the correlation of polymers in  both the dilute 
and dense phases. These results have also been extended by Cardy [5] and by Duplantier 
and Saieur [6] to describe surface critical behaviour (for a recent review covering also 
numerical results, see [7]). 

In this letter we give an exact Bethe ansatz solution of an O ( n )  model on the 
honeycomb lattice with open boundaries. We use this exact solution to derive, via Cardy’s 
amplitude-exponent relation for finite-size scaling in open strips [SI. the critical exponents 
characterizing the surface critical behaviour. 

Our starting point is the high-temperature expansion of the partition function of the 
O(n) model of Domany et al [9] which can be written as a sum over all configurations of 
closed and non-intersecting loops 

where N is the total number of lattice sites, b is the total number of bonds covered, P is 
the number of loops and t is the fugacity of an empty site. For this model Nienhuis [lo] 
obtained the criticality condition 

t 2 = 2 + G .  (2) 

Here n = -2cosng, where g is the Coulomb gas coupling constant, with g E [ I ,  21 in the 
high-temperature (critical) phase and g E IO, 11 in the low-temperature (dense) phase. 
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Now Baxter [ I  I ]  also obtained (2) as a~ condition for- solvability of the underlying 
three-state vertex model, i.e. as a condition for the diagonalization of the corresponding 
row-to-row transfer matrix by means of the coordinate Bethe ansatz. More generally this 
vertex model is a limit of the Izergin-Korepin model [121 (see, e.g. [13]). The row-to-row 
transfer matrix of this latter model has been diagonalized by means of the so-called analytic 
ansatz [14,15], the algebraic Bethe ansatz [I61 and the coordinate Bethe ansatz [17]. 

In order to make the above loop model equivalent to a vertex model, each loop carries 
an orientation as shown in figure l(u). Each left (right) turn is then associated with a weight 
e'" (e-ia), where n = 2cos6ol. To derive the Bethe ansatz solution of this model we begin 
by noting that the honeycomb lattice can be transformed into the squ" lattice (see figure 1 
and also [13]). On the square lattice, the model can be regarded as a 17-vertex model, with 
allowed vertices and corresponding weights as shown in figure 2. Also shown are the six 
possible boundary configurations. Following Baxter [lll, we then interpret the vertex model 
as a line model (see also figure 2). The number of lines in a given row of diagonal bonds 
is a conserved quantity and the line model is amenable to the coordinate Bethe ansatz. To 
obtain the solution we employ a similar approach to that adopted by Owczarek and Baxter 
[18] in their treatment of the six-vertex model. 

X K K X X H K K K  

- I  
1 1 1 1 l t S S 1  

Figure 1. Finite slrip of width L = 6 on ( 0 )  the 
honeycomb lattice and ( b )  the equivalent square Iallice. 

Figure 2. Allowed states on fhe hooeycomb lanice 
(above) and their corresponding line representations on 
the square lattice (bclow). The corresponding vertex 
weights are also indicnled. The last set of diagrams 
correspond Io boupdary configurations. The weighls 
are given by s = -e-i4A and I = 2cos A. 

From figure 1, we note that there are two types of transfer matrix, say TI and T2. Thus 
we must solve two coupled eigenvalue equations, 

T i F = h G  T2G=AF. (3) 
Letting X I .  . . . , xe denote the position of the e lines in a row, we adopt the following ansatze 
for the eigenfunctions, 

F b i , .  . . , XC) = x A ( k p , ,  . . . , k p t ) f ( k p , , d  x ' .  x f ( k p , ,  xi) 

G(xl ,..., x ~ ) = C A ( k p ,  ,..., kp,)g(kp,,xi) x ' . .  ~ g ( k , , , x u )  
(4) 
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in which the ‘one-body’ wavefunctions assume the form 

(5 )  
x even AceiXX x even Beeikz 

{B,e’” x odd 
g ( k ,  x) = [ A,eikx x odd 

f ( k ,  x) = 

and summations are taken over all permutations and all negations. As for the row-to-row 
transfer matrix case [ I l l ,  we introduce two types of ‘one body’ wavefunction for doubly 
occupied states. The eigen equations determine the relation between the coefficients of all 
‘one body’ wavefunctions and the consistency equations among the d(k,,  , . . . , k p t ) .  

Omitting the details of the derivation, we find that the eigenvalues of the transfer matrix 
product TlTz are given by 

sinh(uj + i3X/2) sinh(uj - i3X/2) 
smh(uj + ih/2) sinh(uj - 3.12) 

A 2 = n  , 

j = l  

where the uj  follow as roots of the Bethe ansatz equations 

sinh(uj - ih/2) sinh(uj - i3h/2) ‘ 
sinh(u, + ih/2) sinh(uj + i3h/2) 1 

sinh(uj - U p  + ik) sinh(uj + U k  + ih) sinh(ui - Uk - i2h) sinh(u, + Uk - i2h) t 

. (7) - - 

Here L is the width of the strip (e.g. L = 6 in figure I(b)). The total number of lines e 
label the sectors of T,Tz with = L for the largest eigenvalue Ao. The parameter h is 
related to n and f via 

n = -2cos41 f = 2cosh .  (8) 

The relationships with other parametrizations of n are given by 4h + ng = 2n and 

We now proceed to derive the critical behaviour from the Bethe ansatz solution. As the 
approach is quite standard, we simply sketch the details. Detailed working of similar 
calculations for the same O(n)  model with periodic boundaries can be  found in [19] 
and [20]. We first consider the thermodynamic limit L + CO We define the Fourier 
transformation of a function a(u) by 

h = (a -8 ) /2  [I]]. 

m 

i [ x ]  = - a(u)eixudu a(u) = (9) 

The explicit form of the root density for A0 follows as 

The free energy per vertex, fm. is then 

fm = - lim log A t  
L+CC 

sinh(fn - h)xsinhhx 
dx  . 

x s i n h ~ n x ( 2 c o s h h x  - 1) 
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This expression coincides with the previous result [ I  I]. 
For periodic boundaries, there is a cusp in the free energy at ho N 1.351, with a different 

expression for the free energy in the region ho .i A < ir/2 [11,21]. However, for open 
boundaries there is no cusp and the result (1 1) holds over the whole region 0 < I < x / 2 .  
This is a clear example of boundary effects modifying the bulk behaviour. In the present 
case, the difference is due to entropic effects, i.e. the number of possible configurations is 
suppressed by the presence of 'walls'. Indeed, at h = ir/2 it can be readily shown that 
for open boundaries the partition function is given by 2 = ZL and thus fm = 0, while for 
periodic boundaries, &, = -0.37912. .. [ I l l .  

In the absence of any spectral parameter, the finite-size corrections for this mode1 can 
nevertheless be readily obtained via the root-density method developed by de Vega and 
Woynarovich et al (see, e.g. [22,20] and references therein). We begin with the function 

. 

where 

@(u.h)  = Ztan-'(cotAtanhu) (13) 

and 

Q(u)  = 2@(u,  $) + #(U, 21) - $(U, A) + m u ,  2r:) - @(2u, A). (14) 

In defining the function z ~ ( u )  we have used the symmetry of the root distribution under 
U + -U. Its derivative, pL(u) .  satisfies the integral equation 

' / . K l ( u  -u')@(u')dv'+ - 257 Kz(u - u')&(u')du' (15) ' J  PL(u )  - Pm(U) - 4xZL 

where 

sinh $ r x  
(2coshhx - 1) sinh( !p - h)x 

!?,[XI = 

- 2cosh - 3h)x sinh ;AX 
KdxI  = (2coshhx - 1) sinh( f x  - h)n' 

The finite-size correction to the free energy is given by 

1 - cosr: 
K , ( u  -u')Q(u')q(u)dudu' 

1 
2 L  fr - fm = --log 
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where 

Zsinh($r - h)x sinh ihx 
?,[XI = &[XI = 

sinh ;AX x(2coshhx - 1) '  

The first and the second terms in (18) contribute to the surface free energy &, Explicitly, 
we find 

1 1 - cosh  
2 f I -  - - - l o g ( 1 - C o S 3 A )  

sinh fhx cosh ahx cosh :(A - 2h)x sinh ~ ( J I  - 3h)x(Zcosh +Ax - I) 
dx. (20) 

The surface free energy is shown as a function o€ h in figure 3. We note that fs vanishes 
precisely at the n = 0 dilute polymer point (h  = z/S)t, whereas fs > 0 at the n = 0 dense 
polymer point (A = 3n/8), i.e. the dense polymers feel a repulsion from the boundary. 

-4L xsinh $x(Zcoshhx - 1) 

I .2 'I/,/;,; polymer 

fB 0.4 

0.2 

0 t- dilute polymer 

-0.2 
0 0.1 0.2 0.3 0.4 OS 

?JX 
Figure 3. Surface free energy of the honeycomb O [ n )  model 3s a function of A 

In order to find the amplitudes of the O(1/L2) contributions, we solve equation (15), 
under the sum rule 

where e^ = L -e is a more convenient sector label. Employing the standard argument based 
on the Wiener-Hopf method, we find 

where fL(t!) is the lowest free energy in sector t!, <(a scale factor) = ir /3  , and 

3 
c - -  1 [(A - 4h) + 2i(n - 2h)]2. '- - A(= -2h) 

t Moreover, we observe that all finite-size corrections to the freeenergy vanish at this point. with Ag = [2+ &jL, 
where p = is the connective constant for self-avoiding walks. A similar point exists at n = 1 in the 
low-temperature phase (A = z/3) where A" =2L-t.  
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It thus follows [23] that the central charge is given by c =CO, in agreement with the earlier 
identifications. The scaling dimensions of the theory follow from the amplitude-exponent 
relation [SI 

~ 

From (22) and (23) we thus have 

We have checked these values via a direct independent numerical diagonalization of the 
transfer matrices for strips of width L = 2, 4, 6, 8. 

Result (25) is in direct agreement with that obtained via conformal invariance arguments 
[5,6]. Physically, these dimensions characterize the correlation of half-watermelon 
configurations, with the correlator a!ong the surface decaying at criticality as 

(# t (X)#t (Y))  - IX - yr2"i (26) 

where e^ self-avoiding walks are tied at their extremities X and Y located near the surface 
[6]. Thus xi = (3e  ̂+ 2)e^/8 for dilute polymers (A = x / 8 ) ,  x i  = (e^ - 2)&8 for dense 
polymers (A = 3x/8)  and xS = ( e ^ -  1)e /̂6 at the Duplantier-Saleur &point [24] (A = r j 3 ) .  

Apart from the six-vertex model [IS] and the present model, i t  appears that no other 
models have been solved in the present geometry, i.e. with free boundaries across a strip 
in the diagonal direction. It will be worthwhile seeking similar Bethe ansatz solutions of 
other lattice models. Later we hope to report on a similar treatment of the O(n) model on 
the square lattice [25, 17,261. 

One of the authors (JS) is grateful for the hospitality shown to him by the Mathematics 
Department, Australian National University where this work was done. This work has been 
supported by the Australian Research Council. 

e 

References 

de G e m s  P G 1979 Scaling Concepts in Polymer Physics (Ithaca: Cornel1 University) 
Cardy 1 L 1987 Phase Trunrilions and Cririirical Phenumenn vat 1 I ,  ed C Domb and J L Lebowilz (London: 

Duplnnlier B 1989 Phys. Rep. 184 229 
Nienhuis B 1990 Fundumenml Problem in Sfmistieal Meetianics YOI VI[, ed H van Beijeren (Amsterdam: 

Cardy J L 1984 Nucl, Pliys. B 240 514 
Duphntier B and Saleur H 1986 Phys. Rev. Lett 57 3179; 1987 Nucl, P l y .  B 290 291 
De'Bell K and Lookman T 1993 Rev. Mod, Phyr 65 87 
Cardy I L 1984 J. Phys. A: Math. Gen. 17 L385 
Domnny E, Mukmel D. Nienhuis B and Schwimmer A 1981 Nucl. Phys. B 190 279 
Nienhuis B 1982 Plrys. Rev. Len 49 1062 
B a t e r  R I 1986 J. Phys. A: Muh.  Gen. 19 2821 
lzergin A G and Korepin V E 1981 Cownun. Mark Phys. 79 303 
Reshetikhin N Yu 1991 J. Phys. A: Mark Gen. 24 2387 
Vichirko'V and Reshetikhin N Yu 1983 Them Math. Pltys. 56 260 

Academic) p 99 

Elsevier) p 255 



Leffer to fhe Editor 

[I51 Mezincescu L M and Nepomechie R I 1992 Nuel. Pkys. B 312 597 
[I61 Tansov V 1988 Theor. M a k .  Phys. 76 184 
[I71 Batchelor M T, Nienhuis B and Wamaar S 0 1989 Phys. Rev. Le#. 62 2425 

W m m  S 0 1989 DoefomaLrcripfie Rijksunivmiteit Leiden 
[I81 Owczarek A Land Baxter R J 1989 J.  Pkys. A: Math. Gen. 22 1141 
[I91 Batchelor M T and Blate H W 1 1988 Pkys. Rev. Len. 61 138 

Suzuki J 1988 f. Phys. Soc. Jnpm SI 2966 
Batchelor M T and Blate H W 1 1989 Phys. Rev. B 39 2391 

1201 Suzuki I. Nagao T and WadaIi M 1992 Inf. J Mod. Phys. B 6 1 1  19 
[21] Baxter R I 1987 J.  Phys. A: Matk. Gen. 20 5241 
[U] de Vega H J and Woynarovich F 1985 N u d  Pkys. B 251 439 
[U] Blate H W J, Carddy J L and Nightingale M P 1986 Phys. Rev. Left. 56 742 
[24] Duplantier B and Saleur H 1987 Phys. Rev. Left. 59 539 
[Z] Nienhuis B 1990 Inf. J.  Mod. Pkys. B 4 929 
I261 W m a v  S 0, Batchelor M T and Nienhuis B 1992 J.  Pkys. A: Moth. Gen. 25 3077 

L735 


